THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Усилители низкой частоты (УНЧ) используют для преобразования слабых сигналов преимущественно звукового диапазона в более мощные сигналы, приемлемые для непосредственного восприятия через электродинамические или иные излучатели звука.

Заметим, что высокочастотные усилители до частот 10... 100 МГц строят по аналогичным схемам, все отличие чаще всего сводится к тому, что значения емкостей конденсаторов таких усилителей уменьшаются во столько раз, во сколько частота высокочастотного сигнала превосходит частоту низкочастотного.

Простой усилитель на одном транзисторе

Простейший УНЧ, выполненный по схеме с общим эмиттером, показан на рис. 1. В качестве нагрузки использован телефонный капсюль. Допустимое напряжение питания для этого усилителя 3...12 В.

Величину резистора смещения R1 (десятки кОм) желательно определить экспериментально, поскольку его оптимальная величина зависит от напряжения питания усилителя, сопротивления телефонного капсюля, коэффициента передачи конкретного экземпляра транзистора.

Рис. 1. Схема простого УНЧ на одном транзисторе + конденсатор и резистор.

Для выбора начального значения резистора R1 следует учесть, что его величина примерно в сто и более раз должна превышать сопротивление, включенное в цепь нагрузки. Для подбора резистора смещения рекомендуется последовательно включить постоянный резистор сопротивлением 20...30 кОм и переменный сопротивлением 100... 1000 кОм, после чего, подав на вход усилителя звуковой сигнал небольшой амплитуды, например, от магнитофона или плеера, вращением ручки переменного резистора добиться наилучшего качества сигнала при наибольшей его громкости.

Величина емкости переходного конденсатора С1 (рис. 1) может находиться в пределах от 1 до 100 мкФ: чем больше величина этой емкости, тем более низкие частоты может усиливать УНЧ. Для освоения техники усиления низких частот рекомендуется поэкспериментировать с подбором номиналов элементов и режимов работы усилителей (рис. 1 - 4).

Улучшениые варианты однотранзисторного усилителя

Усложненные и улучшенные по сравнению со схемой на рис. 1 схемы усилителей приведены на рис. 2 и 3. В схеме на рис. 2 каскад усиления дополнительно содержит цепочку частотнозависимой отрицательной обратной связи (резистор R2 и конденсатор С2), улучшающей качество сигнала.

Рис. 2. Схема однотранзисторного УНЧ с цепочкой частотнозависимой отрицательной обратной связи.

Рис. 3. Однотранзисторный усилитель с делителем для подачи напряжения смещения на базу транзистора.

Рис. 4. Однотранзисторный усилитель с автоматической установкой смещения для базы транзистора.

В схеме на рис. 3 смещение на базу транзистора задано более «жестко» с помощью делителя, что улучшает качество работы усилителя при изменении условий его эксплуатации. «Автоматическая» установка смещения на базе усилительного транзистора применена в схеме на рис. 4.

Двухкаскадный усилитель на транзисторах

Соединив последовательно два простейших каскада усиления (рис. 1), можно получить двухкаскадный УНЧ (рис. 5). Усиление такого усилителя равно произведению коэффициентов усиления отдельно взятых каскадов. Однако получить большое устойчивое усиление при последующем наращивании числа каскадов нелегко: усилитель скорее всего самовозбудится.

Рис. 5. Схема простого двухкаскадного усилителя НЧ.

Новые разработки усилителей НЧ, схемы которых часто приводят на страницах журналов последних лет, преследуют цель достижения минимального коэффициента нелинейных искажений, повышения выходной мощности, расширения полосы усиливаемых частот и т.д.

В то же время, при наладке различных устройств и проведении экспериментов зачастую необходим несложный УНЧ, собрать который можно за несколько минут. Такой усилитель должен содержать минимальное число дефицитных элементов и работать в широком интервале изменения напряжения питания и сопротивления нагрузки.

Схема УНЧ на полевом и кремниевом транзисторах

Схема простого усилителя мощности НЧ с непосредственной связью между каскадами приведена на рис. 6 [Рл 3/00-14]. Входное сопротивление усилителя определяется номиналом потенциометра R1 и может изменяться от сотен Ом до десятков МОм. На выход усилителя можно подключать нагрузку сопротивлением от 2...4 до 64 Ом и выше.

При высокоомной нагрузке в качестве VT2 можно использовать транзистор КТ315. Усилитель работоспособен в диапазоне питающих напряжений от 3 до 15 В, хотя приемлемая работоспособность его сохраняется и при снижении напряжения питания вплоть до 0,6 В.

Емкость конденсатора С1 может быть выбрана в пределах от 1 до 100 мкФ. В последнем случае (С1 =100 мкФ) УНЧ может работать в полосе частот от 50 Гц до 200 кГц и выше.

Рис. 6. Схема простого усилителя низкой частоты на двух транзисторах.

Амплитуда входного сигнала УНЧ не должна превышать 0,5...0,7 В. Выходная мощность усилителя может изменяться от десятков мВт до единиц Вт в зависимости от сопротивления нагрузки и величины питающего напряжения.

Настройка усилителя заключается в подборе резисторов R2 и R3. С их помощью устанавливают напряжение на стоке транзистора VT1, равное 50...60% от напряжения источника питания. Транзистор VT2 должен быть установлен на теплоотводя-щей пластине (радиаторе).

Трекаскадный УНЧ с непосредственной связью

На рис. 7 показана схема другого внешне простого УНЧ с непосредственными связями между каскадами. Такого рода связь улучшает частотные характеристики усилителя в области нижних частот, схема в целом упрощается.

Рис. 7. Принципиальная схема трехкаскадного УНЧ с непосредственной связью между каскадами.

В то же время настройка усилителя осложняется тем, что каждое сопротивление усилителя приходится подбирать в индивидуальном порядке. Ориентировочно соотношение резисторов R2 и R3, R3 и R4, R4 и R BF должно быть в пределах (30...50) к 1. Резистор R1 должен быть 0,1...2 кОм. Расчет усилителя, приведенного на рис. 7, можно найти в литературе, например, [Р 9/70-60].

Схемы каскадных УНЧ на биполярных транзисторах

На рис. 8 и 9 показаны схемы каскодных УНЧ на биполярных транзисторах. Такие усилители имеют довольно высокий коэффициент усиления Ку. Усилитель на рис. 8 имеет Ку=5 в полосе частот от 30 Гц до 120 кГц [МК 2/86-15]. УНЧ по схеме на рис. 9 при коэффициенте гармоник менее 1% имеет коэффициент усиления 100 [РЛ 3/99-10].

Рис. 8. Каскадный УНЧ на двух транзисторах с коэффициентом усиления = 5.

Рис. 9. Каскадный УНЧ на двух транзисторах с коэффициентом усиления = 100.

Экономичный УНЧ на трех транзисторах

Для портативной радиоэлектронной аппаратуры важным параметром является экономичность УНЧ. Схема такого УНЧ представлена на рис. 10 [РЛ 3/00-14]. Здесь использовано каскадное включение полевого транзистора VT1 и биполярного транзистора VT3, причем транзистор VT2 включен таким образом, что стабилизирует рабочую точку VT1 и VT3.

При увеличении входного напряжения этот транзистор шунтирует переход эмиттер — база VT3 и уменьшает значение тока, протекающего через транзисторы VT1 и VT3.

Рис. 10. Схема простого экономичного усилителя НЧ на трех транзисторах.

Как и в приведенной выше схеме (см. рис. 6), входное сопротивление этого УНЧ можно задавать в пределах от десятков Ом до десятков МОм. В качестве нагрузки использован телефонный капсюль, например, ТК-67 или ТМ-2В. Телефонный капсюль, подключаемый при помощи штекера, может одновременно служить выключателем питания схемы.

Напряжение питания УНЧ составляет от 1,5 до 15 В, хотя работоспособность устройства сохраняется и при снижении питающего напряжения до 0,6 В. В диапазоне напряжения питания 2... 15 В потребляемый усилителем ток описывается выражением:

1(мкА) = 52 + 13*(Uпит)*(Uпит),

где Uпит - напряжение питания в Вольтах (В).

Если отключить транзистор VT2, потребляемый устройством ток увеличивается на порядок.

Двухкаскадные УНЧ с непосредственной связью между каскадами

Примерами УНЧ с непосредственными связями и минимальным подбором режима работы являются схемы, приведенные на рис. 11 - 14. Они имеют высокий коэффициент усиления и хорошую стабильность.

Рис. 11. Простой двухкаскадный УНЧ для микрофона (низкий уровень шумов, высокий КУ).

Рис. 12. Двухкаскадный усилитель низкой частоты на транзисторах КТ315.

Рис. 13. Двухкаскадный усилитель низкой частоты на транзисторах КТ315 - вариант 2.

Микрофонный усилитель (рис. 11) характеризуется низким уровнем собственных шумов и высоким коэффициентом усиления [МК 5/83-XIV]. В качестве микрофона ВМ1 использован микрофон электродинамического типа.

В роли микрофона может выступать и телефонный капсюль. Стабилизация рабочей точки (начального смещения на базе входного транзистора) усилителей на рис. 11 - 13 осуществляется за счет падения напряжения на эмиттерном сопротивлении второго каскада усиления.

Рис. 14. Двухкаскадный УНЧ с полевым транзистором.

Усилитель (рис. 14), имеющий высокое входное сопротивление (порядка 1 МОм), выполнен на полевом транзисторе VT1 (истоковый повторитель) и биполярном — VT2 (с общим).

Каскадный усилитель низкой частоты на полевых транзисторах, также имеющий высокое входное сопротивление, показан на рис. 15.

Рис. 15. схема простого двухкаскадного УНЧ на двух полевых транзисторах.

Схемы УНЧ для работы с низкоОмной нагрузкой

Типовые УНЧ, предназначенные для работы на низкоомную нагрузку и имеющие выходную мощность десятки мВт и выше, изображены на рис. 16, 17.

Рис. 16. Простой УНЧ для работы с включением нагрузки с низким сопротивлением.

Электродинамическая головка ВА1 может быть подключена к выходу усилителя, как показано на рис. 16, либо в диагональ моста (рис. 17). Если источник питания выполнен из двух последовательно соединенных батарей (аккумуляторов), правый по схеме вывод головки ВА1 может быть подключен к их средней точки напрямую, без конденсаторов СЗ, С4.

Рис. 17. Схема усилителя низкой частоты с включением низкоомной нагрузки в диагональ моста.

Если вам нужна схема простого лампового УНЧ то такой усилитель можно собрать даже на одной лампе, смотрите у нас на сайте по электронике в соответствующем разделе.

Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год.

Исправления в публикации: на рис. 16 и 17 вместо диода Д9 установлена цепочка из диодов.

ЗАДАНИЕ НА КУРСОВОЙ ПРОЕКТ

Разработать схему двухкаскадного усилителя с непосредственной связью.

Исходные данные для проектирования приведены в таблице 1.

Таблица 1. Исходные данные


ВВЕДЕНИЕ

АНАЛИТИЧЕСКАЯ ЧАСТЬ

2. Выбор транзистора по граничной частоте, максимальному напряжению коллектор – эмиттер и максимальному току коллектора

3. Расчет режима работы транзистора по постоянному току и выбор пассивных элементов схемы: резисторов, конденсаторов, индуктивностей

4. Расчет схемы по переменному току, состоящий из определения коэффициента усиления, входного и выходного сопротивления каскада

5. Расчет номинальных значений пассивных и частотозадающих элементов схемы

6. Замена расчетных значений пассивных элементов значениями из ряда Е24

7. Проверочный расчет режима работы электронной схемы

8. Моделирование работы схемы в среде MicroCap 8

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ


ВВЕДЕНИЕ

Целью данного курсового проекта является изучение методики постановки задачи при проектировании электрических принципиальных схем на полупроводниковых приборах, составления технического задания на проектируемое устройство, получение навыков поэтапного комплексного схемотехнического проектирования электрических узлов, приобретение опыта использования современных информационных технологий и систем имитационного моделирования.

В данном курсовом проекте разрабатывается схема двухкаскадного усилителя с непосредственной связью.


АНАЛИТИЧЕСКАЯ ЧАСТЬ

1. Выбор схемы электронного устройства в зависимости от заданных параметров

Рис. 1. Схема двухкаскадного усилителя с непосредственной связью.

Выбор схемы электронного устройства осуществляется в соответствии с полученным заданием и характеристиками устройства.

Так как требуется обеспечить высокий коэффициент усиления и нет необходимости в очень высоком значении входного сопротивления, то выберем схему ОЭ-ОЭ.

Согласно варианта задания выбрана схема двухкаскадного усилителя с непосредственной связью по схеме ОЭ-ОЭ (Рис. 1.)


2. Выбор транзистора второго каскада по граничной частоте, максимальному напряжению коллектор – эмиттер и максимальному току коллектора

Основным критерием выбора типа транзистора для усилительного каскада служит допустимое напряжение между коллектором и эмиттером U КЭ, которое определяется из условия

(1)

Максимальный ток коллектора транзистора должен превышать рабочий ток каскада

(2)

Граничная частота транзистора должна превышать максимальную частоту рабочего диапазона DF

(3)

По полученным результатам выбираем транзистор КТ312В (ВF240). Для выбранного биполярного транзистора выписываем справочные данные и заносим их в таблицу 2.


Таблица 2.

Наименование Обозначение Значение
Минимальное Максимальное
Максимальное напряжение коллектор-эмиттер, В U КЭ max 20
Максимальный ток коллектора, мА I К max 100
Минимальный ток коллектора, мА I К min
Коэффициент передачи по току h 21Э 50 280
Граничная частота, МГц f a 120
Коэффициент шума, дБ К Ш 40
Обратный ток коллектора, мкА I КБО 10
Емкость коллекторного перехода,пФ С К 5
Максимальная рассеиваемая мощность коллектора, мВт Р max 225
Диапазон рабочей температуры, О С Т -40 +85

3. Расчет режима работы транзистора второго каскада по постоянному току и выбор пассивных элементов схемы: резисторов, конденсаторов, индуктивностей

Расчет начнем с выбора тока покоя биполярного транзистора I K 0 . Так как каскад работает в режиме А, то ток коллектора выбирается из соотношения:

(4)

Для предложенной схемы усилителя R H не задано, поэтому ток коллектора выбираем равным 45 мА.

На рисунке 2 приведено семейство выходных характеристик транзистора.

Определим положение рабочей точки на выходной характеристике выбранного транзистора, учитывая, что он работает в режиме А.



Рис. 2. Семейство выходных характеристик транзистора КТ312В

(5)

Так как транзистор работает в режиме А, то U КО = Е П / 2= 12 / 2 = 6 В.

Примем U КО = 6 В.

Ток покоя базы транзистора определяется из соотношения:

(6)

По двум точкам (I КО, U КО) = (0,045 А, 6 В) и (0, Е П) = (0, 12 В) на семействе выходных характеристик строим нагрузочную прямую.

Рабочую точку выбираем при токе коллектора 22,5 мА, напряжении коллектор – эмиттер 9 В.

Делитель напряжения на резисторах R К1 R VT 1 R Э1 должен обеспечивать расчетное значение тока базы. Для этого должно выполняться условие


(7)

тогда номинальные значения R K 1 и R VT 1 R Э1 можно определить из условия

, (8)

где U Б выбирается из условия U Б = U БЭ + U Э – для маломощных кремниевых транзисторов U БЭ = 0,5…0,8 В.

Для усилительного каскада U Э обычно выбирают в пределах (0,1…0,3)Е П.

(9) (10) (11) (12)

Примем R K 1 равным 2861 Ом. Тогда U Б = 1,7 В.

Ток, проходящий через резистор R Э2 , определяется суммой коллекторного и базового токов

(13)

тогда номинальное значение R Э2 можно определить по формуле


, (14)

Общее сопротивление каскада, по которому протекает коллекторный ток, равно

, отсюда (15)

Расчет второго каскада по переменному току, состоящий из определения коэффициента усиления, входного и выходного сопротивления каскада.

коэффициент усиления по напряжению

(16)

входное и выходное сопротивления

В предлагаемой книге рассматриваются особенности схемотехнических решений, применяемых при создании миниатюрных транзисторных радиопередающих устройств. В соответствующих главах приводится информация о принципах действия и особенностях функционирования отдельных узлов и каскадов, принципиальные схемы, а также другие сведения, необходимые при самостоятельном конструировании простых радиопередатчиков и радиомикрофонов. Отдельная глава посвящена рассмотрению практических конструкций транзисторных микропередатчиков для систем связи малого радиуса действия.

Книга предназначена для начинающих радиолюбителей, интересующихся особенностями схемотехнических решений узлов и каскадов миниатюрных транзисторных радиопередающих устройств.

В миниатюрных транзисторных радиопередающих устройствах нередко возникает необходимость получения большого значения коэффициента усиления низкочастотного сигнала, для чего требуется использовать два и более каскадов усиления. В этом случае применение многокаскадных микрофонных усилителей с емкостной связью, каждый из каскадов которых выполнен на основе рассмотренных схем, не всегда приводит к удовлетворительным результатам. Поэтому в миниатюрных радиопередающих устройствах широкое распространение получили схемотехнические решения микрофонных усилителей с непосредственной связью между каскадами.

Такие усилители содержат меньше деталей, имеют меньшую энергоемкость, легко настраиваются и менее критичны к изменениям величины напряжения питания. Помимо этого усилители с непосредственной связью между каскадами имеют более равномерную полосу пропускания, а нелинейные искажения в них могут быть сведены к минимуму. Одним из главных достоинств таких усилителей является сравнительно высокая температурная стабильность.

Однако высокая температурная стабильность, как и остальные перечисленные выше преимущества усилителей с непосредственной связью между каскадами, могут быть реализованы лишь при использовании глубокой отрицательной обратной связи по постоянному току, подаваемой с выхода на первый каскад усилителя. При применении соответствующего схемотехнического решения любые изменения тока, вызванные как температурными колебаниями, так и другими причинами, усиливаются последующими каскадами и подаются на вход усилителя в такой полярности. В результате усилитель возвращается в исходное состояние.

Принципиальная схема одного из вариантов двухкаскадного микрофонного усилителя с непосредственной связью между каскадами приведена на рис. 2.11. При напряжении питания от 9 до 12 В и максимальном входном напряжении 25 мВ уровень выходного напряжения в частотном диапазоне от 10 Гц до 40 кГц может достигать 5 В. При этом потребляемый ток не превышает 2 мА.


Рис. 2.11. Принципиальная схема микрофонного усилителя с непосредственной связью между каскадами (вариант 1)

Низкочастотный сигнал, сформированный микрофоном ВМ1, через разделительный конденсатор С2 поступает на вход первого усилительного каскада, выполненного на транзисторе VT1. Конденсатор С1 обеспечивает фильтрацию нежелательных высокочастотных составляющих входного сигнала. Через резистор R1 на электретный микрофон ВМ1 подается напряжение питания.

Усиленный сигнал с коллекторной нагрузки транзистора VT1 (резистор R2) подается непосредственно на базу транзистора VT2, на котором выполнен второй усилительный каскад. С коллекторной нагрузки этого транзистора сигнал поступает на выход усилителя через разделительный конденсатор С4.

Необходимо отметить, что резистор R2, используемый в качестве нагрузочного резистора в цепи коллектора транзистора VТ1, имеет сравнительно большое сопротивление. В результате напряжение на коллекторе транзистора VТ1 будет достаточно малым, что позволяет подключить базу транзистора VТ2 непосредственно к коллектору транзистора VТ1. Немалое значение в выборе режима работы транзистора VТ2 играет и величина сопротивления резистора R6.

Между эмиттером транзистора VТ2 и базой транзистора VТ1 включен резистор R4, обеспечивающий возникновение между каскадами отрицательной обратной связи по постоянному току. В результате напряжение на базе транзистора VТ1 формируется с помощью резистора R4 из напряжения, присутствующего на эмиттере транзистора VТ2, которое в свою очередь формируется при прохождении коллекторного тока этого транзистора через резистор R6. По переменному току резистор R6 шунтирован конденсатором С3.

Если по какой-либо причине ток, проходящий через транзистор VТ2, увеличится, то соответственно увеличится и напряжение на резисторах R5 и R6. В результате, благодаря резистору R4, увеличится напряжение на базе транзистора VТ1, что приведет к увеличению его коллекторного тока и соответствующему увеличению падения напряжения на резисторе R2, а это вызовет уменьшение напряжения на коллекторе транзистора VТ1, к которому непосредственно подключена база транзистора VТ2. Уменьшение значения напряжения на базе транзистора VТ2 приведет к уменьшению коллекторного тока этого транзистора и соответствующему уменьшению напряжения на резисторах R5 и R6. При этом уменьшится напряжение на базе транзистора VТ1, этот транзистор прикроется и вновь будет работать в нормальном, первоначально установленном режиме. Таким образом, токи и рабочие точки транзисторов VТ1 и VТ2 будут стабилизированы. Аналогичным образом схема стабилизации функционирует и при возможном уменьшении коллекторного тока транзистора VТ2, например, при уменьшении температуры окружающей среды.

У усилителей с непосредственной связью между каскадами для установки режима обычно бывает достаточно подобрать величину сопротивления лишь одного резистора. В рассмотренной схеме режим работы устанавливается подбором сопротивления резистора R6 или резистора R2.

В связи с тем, что резистор R3 не зашунтирован конденсатором, в данном усилителе возникает обратная связь по переменному току, обеспечивающая резкое уменьшение искажений.

Необходимо отметить, что при любом изменении номинала резистора R4 или величины питающего напряжения усилителя необходимо откорректировать и положение рабочей точки. Важную роль в этом процессе играет резистор R6, вместо которого в процессе налаживания конструкции обычно устанавливается подстроечный резистор, обеспечивающий правильный выбор рабочей точки транзисторов VТ1 и VТ2.

Принципиальная схема еще одного варианта двухкаскадного микрофонного усилителя с непосредственной связью между каскадами приведена на рис. 2.12. Отличительной особенностью данного схемотехнического решения, по сравнению с предыдущим, является то, что для стабилизации режима работы в предлагаемой схеме используются две цепи обратной связи с выхода на вход.


Рис. 2.12. Принципиальная схема микрофонного усилителя с непосредственной связью между каскадами (вариант 2)

Нетрудно заметить, что помимо передачи напряжения, снимаемого с эмиттера транзистора VT2, на базу транзистора VT1 через резистор R4, в данной конструкции также обеспечивается изменение напряжения эмиттера транзистора первого каскада в зависимости от величины тока, проходящего через коллекторную нагрузку транзистора VT2 (резистор R6). Вторая цепь обратной связи, подключенная между коллектором транзистора VT2 и эмиттером транзистора VT1, образована включенными параллельно резистором R5 и конденсатором С3. Необходимо отметить, что от величины емкости конденсатора С3 зависит значение верхней граничной частоты полосы пропускания данного микрофонного усилителя.

При напряжении питания от 9 до 15 В и максимальном входном напряжении 25 мВ уровень выходного напряжения рассмотренного двухкаскадного усилителя в частотном диапазоне от 20 Гц до 20 кГц может достигать 2,5 В. При этом потребляемый ток не превышает 2 мА.

Принципиальная схема еще одного варианта микрофонного усилителя с непосредственной связью между каскадами приведена на рис. 2.13.


Рис. 2.13. Принципиальная схема микрофонного усилителя с непосредственной связью между каскадами (вариант 3)

В данной конструкции сигнал, сформированный микрофоном ВМ1, через разделительный конденсатор С1 и резистор R2 проходит на базу транзистора VТ1, на котором собран первый каскад усиления. Усиленный сигнал с коллектора транзистора VТ1 подается непосредственно на базу транзистора VТ2 второго усилительного каскада.

Между эмиттером транзистора VТ2 и базой транзистора VТ1 включен резистор R4, обеспечивающий возникновение между каскадами отрицательной обратной связи по постоянному току. В результате напряжение на базе транзистора VТ1 формируется с помощью резистора R4 из напряжения на эмиттере транзистора VТ2, которое в свою очередь формируется при прохождении коллекторного тока этого транзистора через резистор R6. По переменному току резистор R6 шунтирован конденсатором С3.

Сформированный на коллекторе транзистора VТ2 сигнал через разделительный конденсатор С4 и потенциометр R8 подается на выход микрофонного усилителя. Для уменьшения частотных искажений в области нижних частот емкость разделительного конденсатора С4 увеличена до 20 мкФ. Потенциометр R8 выполняет функцию регулятора уровня выходного НЧ-сигнала и имеет логарифмическую характеристику (тип В).

В обычных усилительных каскадах, в которых транзистор включен по схеме с общим эмиттером, коэффициент усиления каскада определяется в первую очередь особенностями самого транзистора. В данной схеме коэффициент усиления в значительной степени зависит от параметров второй цепи обратной связи, включенной между выходом усилителя и эмиттером транзистора VТ1. В рассматриваемой схеме эта цепь обратной связи образована резистором R7. Теоретически коэффициент усиления К УС двухступенчатого усилительного каскада с непосредственной связью определяется соотношением величин сопротивлений резисторов R7 и R3, то есть вычисляется по формуле:

К УС = R7/R3.

Для рассматриваемого каскада коэффициент К УС = 10000/180 = = 55,55. Приведенная формула справедлива для значений коэффициента усиления, находящихся в пределах от 10 до 100. При иных соотношениях вступают в силу дополнительные факторы, влияющие на величину коэффициента усиления. Особые методики расчета следует применять в тех случаях, когда в цепь обратной связи включаются последовательные или параллельные RC-цепочки.

Рассматривая классические схемы микрофонных усилителей на биполярных транзисторах, нельзя не упомянуть о двухкаскадном усилителе, выполненном на двух биполярных транзисторах разной проводимости. Принципиальная схема простого микрофонного усилителя, выполненного на n-p-n и p-n-p транзисторах, приведена на рис. 2.14.


Рис. 2.14. Принципиальная схема микрофонного усилителя на биполярных транзисторах разной проводимости

Несмотря на простоту, данный усилитель, который можно использовать для усиления сигналов, снимаемых с выхода конденсаторного микрофона, имеет весьма приемлемые параметры. При напряжении питания от 6 до 12 В и максимальном входном напряжении 100 мВ уровень выходного напряжения в частотном диапазоне от 70 Гц до 45 кГц достигает 2,5 В.

Сформированный на выходе микрофона ВМ1 сигнал через разделительный конденсатор С1 подается на базу транзистора VТ1, имеющего n-p-n проводимость, на котором выполнен первый усилительный каскад. Напряжение смещения, подаваемое на базу транзистора VТ1, формируется делителем, который образован резисторами R2 и R3.

Величина спада частотной характеристики данного микрофонного усилителя в области нижних частот в значительной степени зависит от емкости разделительного конденсатора С1. Чем меньше емкость этого конденсатора, тем больше спад частотной характеристики. Поэтому при указанном на схеме номинале емкости конденсатора С1 нижняя граница диапазона воспроизводимых усилителем частот находится на частоте около 70 Гц.

С коллектора транзистора VТ1 усиленный сигнал подается непосредственно на базу транзистора VТ2, имеющего p-n-p проводимость, на котором выполнен второй усилительный каскад. В данном усилителе, как и в рассмотренных ранее конструкциях, используется схема с непосредственной связью между каскадами. В качестве нагрузочного резистора в цепи коллектора транзистора VТ1 используется резистор R4, имеющий большое сопротивление. В результате напряжение на коллекторе транзистора VТ1 будет сравнительно малым, что позволяет базу транзистора VТ2 подключить непосредственно к коллектору транзистора VТ1. Немалое значение в выборе режима работы транзистора VТ2 играет и величина сопротивления резистора R7.

Сформированный на коллекторе транзистора VТ2 сигнал через разделительный конденсатор С4 подается на выход микрофонного усилителя. Для уменьшения частотных искажений в области нижних частот емкость разделительного конденсатора С4 увеличена до 10 мкФ. Величина спада в области верхних частот воспроизводимого усилителем диапазона может быть обеспечена уменьшением сопротивления нагрузки, а также использованием транзисторов с более высоким значением предельной частоты.

Коэффициент усиления данного усилителя определяется соотношением сопротивлений резисторов R5 и R6 в цепи обратной связи. Конденсатор С3 ограничивает усиление на высших частотах, препятствуя самовозбуждению усилителя.

При применении конденсаторного микрофона в цепь его включения потребуется подавать напряжение, необходимое для его питания. С этой целью в схеме установлен резистор R1, который одновременно является нагрузочным резистором выхода микрофона. При использовании рассматриваемого микрофонного усилителя с электродинамическим микрофоном резистор R1 из схемы можно исключить.

Особого внимания заслуживают схемотехнические решения двухкаскадных микрофонных усилителей, в которых входной каскад выполнен на полевом, а выходной каскад – на биполярном транзисторе. Принципиальная схема одного из вариантов простого микрофонного усилителя, выполненного на полевом и биполярном транзисторах, приведена на рис. 2.15. Данная конструкция характеризуется не только низким уровнем шумов и сравнительно высоким входным сопротивлением, но и значительной шириной диапазона частот усиливаемого сигнала. При напряжении питания от 9 до 12 В и максимальном входном напряжении 25 мВ уровень выходного напряжения в частотном диапазоне от 10 Гц до 100 кГц может достигать 2,5 В. При этом потребляемый ток не превышает 1 мА, а входное сопротивление составляет 1 МОм.


Рис. 2.15. Принципиальная схема микрофонного усилителя на полевом и биполярном транзисторах разной проводимости

Снимаемый с выхода микрофона ВМ1 сигнал через разделительный конденсатор С1 и резистор R1 подается на затвор полевого транзистора VТ1, на котором выполнен входной усилительный каскад. Резистор R2, величина сопротивления которого определяет значение входного сопротивления всей конструкции, обеспечивает по постоянному току связь затвора транзистора VТ1 с шиной корпуса. По постоянному току положение рабочей точки транзистора VТ1 определяется величинами сопротивлений резисторов R3, R4 и R5. По переменному току резистор R5 шунтирован конденсаторами С2 и С3. Сравнительно большая емкость конденсатора С2 обеспечивает достаточное усиление в нижней части диапазона частот усиливаемого сигнала. В свою очередь, величина емкости конденсатора С3 обеспечивает достаточное усиление в верхней части диапазона частот.

Усиленный сигнал снимается с нагрузочного резистора R3 и подается непосредственно на базу транзистора VT2, имеющего p-n-p-проводимость, на котором выполнен второй каскад усиления. Резистор R6, включенный в коллекторную цепь транзистора VT2, не только является нагрузочным резистором во втором усилительном каскаде, но и входит в состав цепи обратной связи транзистора VT1. Соотношением величин резисторов R6 и R4 определяется коэффициент усиления всей конструкции. При необходимости усиление можно уменьшить, подобрав величину сопротивления резистора R4. Сформированный на коллекторе транзистора VТ2 сигнал через резистор R7 и разделительный конденсатор С4 подается на выход микрофонного усилителя.

Чем проще конструкция, тем больше в ней простора для творчества. Схема двухкаскадного усилителя вылизана до блеска, но вы можете «приправить» звучание по собственному вкусу.

СВЯТАЯ ПРОСТОТА

Этот материал, в отличие от большинства других, редакцией не заказывался, а пришел «самотеком» по e-mail. Поэтому традиционного представления автора - с портретом и комплиментами - не будет. Уверены, что по прочтении оного в вашем воображении портрет нарисуется сам собой, а уж насчет комплиментов решайте сами.

Intro

Вообще-то, звук - дело вкуса. От схемы я старался добиться нейтральности, детальности и ровных на слух тембрального и частотного баланса, как исходной посылки для дальнейших процедур. Что-то вроде чистого холста.

Под детальностью я подразумеваю передачу тонких оттенков тембров, реверберации, естественности затухания звуков, послезвучия… Она же, детальность, проявляется в натуральности передачи и естественности динамики хорошо знакомых нам звуков, впитанных нами с детства.

Что же касается музыки, то здесь, особенно на неважно сделанных записях, иногда хочется что-нибудь подкрасить или, наоборот, замазать. Вплоть до установки переключателя «мягко - нейтрально - динамично».

В результате все решения окончательно выбирались (или отбраковывались) путем прослушивания. Это мой усилитель, и звучит он так, как я считаю должным. Без претензий на Абсолют(ность)…

В тоже время я особо не «затачивался» на том, что схема не потерпит вольного вмешательства и никак не подойдет «чайникам» с необременительным достатком. Но, несмотря на внешнюю простоту, схема усилителя вылизывалась долго - несколько лет. Её возможности раскроются только с хорошими источником и акустикой.

На мой слух усилитель вышел из-под паяльника достаточно прозрачный, чтобы получить любой желаемый тип звука путем подбора соответствующих деталей . Если кто-нибудь из вас или ваших знакомых хотя бы попробует первый каскад (собственно, вся изюминка в нем!) в максимально строгом окружении - было бы совсем здорово! А то ссылки на восторженные отзывы только одного человека, к тому же автора схемы - это не совсем убедительно.

В первую очередь, это анодный резистор первого каскада и межкаскадный конденсатор. Ну, и остальные компоненты тоже что-то значат…

Часть 1

Вот и начали! Входной сигнал поступает на сетку лампы Л1 через антизвонный дроссель Др1. Выбор дросселя вместо традиционного резистора объясняется, прежде всего, его лучшими звуковыми свойствами в сравнении с обычным резистором. Также следует отметить, что лампа 6С17К проявляет неустойчивость на ВЧ. Дроссель устраняет автогенерацию, не внося заметных искажений. Конечно, применение обычного резистора 1 кОм эту проблему тоже снимает, но слегка портит звук.

Первый каскад построен по схеме с фиксированным смещением. Построение схемы определялось следующим «техзаданием»:

Отказ от шунтирующего конденсатора в цепи катода;

Отказ от нежелательной ООС в той же цепи через «классический» резистор;

Отказ от первого переходного конденсатора;

Работа от источника музыкального сигнала с нулевой постоянной составляющей на выходе.

Таким образом, нельзя было возложить задачу организации сеточного смещения на источник сигнала. Была разработана и опробована схема с катодным резистором очень маленького номинала (от долей до единиц Ом), необходимое падение напряжения на котором получалось не за счет тока катода лампы, как в классической схеме, а за счет подачи на этот резистор большого тока от отдельного источника. На практике таким источником явился стабилизатор накала +6,5 В.

Первоначально нужный ток задавался внешним резистором, номинал которого определялся из необходимого напряжения смещения на катоде. В конкретной же схеме оказалось возможным воспользоваться током накала самой лампы 6С17К-В (300 мА), тем более что один из выводов нити накала соединяется с катодом внутри лампы. Было много сомнений по поводу качества работы схемы, были опасения по поводу пролезания помех из стабилизатора накала в усиливаемый сигнал, но всё оказалось хорошо.

Стабилизатор накала не представляет собой ничего особенного: мостовой выпрямитель на диодах с малым падением напряжения, электролитический конденсатор 10000 мкФ/16 В и стабилизатор 7806 с кремниевым диодом, соединенный последовательно с общим выводом для повышения напряжения с 6 до 6,5 В.

Звучание оказалось однозначно лучше, чем в схемах с сеточным входным и/или шунтирующим катодным конденсатором независимо от качества этих конденсаторов. В течение года я два раза возвращался к «классическим» схемам с конденсаторами в указанных местах и всегда убеждался в их ущербности.

Нежелательная ООС на катодном резисторе также практически отсутствует благодаря малости его номинала.

Не стану настаивать на абсолютной новизне этого решения, но пусть кинет в меня камень тот, кто найдет другую схему усилителя с таким вот выкрутасом!

Часть 2

Лампы на входе в принципе при «обычных» условиях можно использовать любые с небольшим напряжением смещения. Ток смещения в этом случае лучше задавать отдельным резистором, а не прогонять его через накал, как это сделано у меня. Но на звучании это не скажется - проверено. Я перепробовал всевозможные лампы, начиная от 6С2П, 6С3П и кончая экзотикой типа нувисторов 6С53Н или сверхминиатюрных триодов, но усиления всё равно остро не хватало. Попутно я выяснил, что разрекламированная лампа 6С45П в самом деле не так уж и хороша - звук мутный и смазанный. А вот 6С3(4)П замечательна, а нувисторы просто великолепны! По опыту друзей и знакомых могу также сказать, что для 2С4С с традиционным входом можно остановиться на 6Ж4 (зарубежные аналоги - 6АС7, 6F10, 6AJ7) в триодном включении и межкаскадном трансформаторе.

Можно и с большим смещением, типа 6H8C, но напряжение вспомогательного источника придется поднять вольт до 30, что неудобно.

Мой же окончательный выбор лампы для входного каскада был обусловлен несколькими требованиями. Во-первых, хотелось ограничиться простой двухкаскадной схемой усилителя. Во-вторых, получить при этом чувствительность не хуже 0,15 - 0,2 В, поскольку предполагалась работа входного каскада усилителя непосредственно с сигналом, пришедшим с токового выхода ЦАПа.

ЦАП очень простой: преобразователь AD1860, токовый выход которого идет на резистор 619 Ом. Именно этот резистор обозначен на схеме как R1. Без фильтров. Коробка ДАКа (бывший DAC-in-BOX Audio Alchemy) размещена прямо в корпусе усилителя, провода из коробки выведены к входной лампе, и тут же распаян резистор R1. Идея была такая: как можно дальше уйти от ЦАПа током, чтобы быть нечувствительным к нелинейностям контактов и паек, и распаять резистор преобразователя I-U прямо у входной лампы. Кстати, резистор безвыводной типа С6-9 размерами примерно 1 х 1 х 1,5 мм.

И тут в справочнике обнаружилась ранее мне неведомая лампа 6С17К-В. Сначала я пролистнул её не глядя, решив, что это очередное генераторное изделие с «правой» характеристикой. К тому же соединение накала и катода внутри баллона делало её непригодной практически для всех стандартных включений, чем и объясняется, видимо, её полное отсутствие в звукоусилительных схемах. Невозможность установки этой лампы в панельку, видимо, также отпугивала от неё усилителестроителей. И последний гвоздь в крышку был забит смехотворной цифрой наработки 200 часов, если верить справочнику.

Но потом разум возобладал, и выяснились следующие вещи:

  1. Лампа идеально подходит к моей схеме организации смещения.
  2. Коэффициент усиления порядка 150 - 180 позволяет добиться вожделенной чувствительности при двух каскадах.
  3. Долговечность по вкладышу к этой лампе в действительности составляет 2000 часов, а с учетом недогрузки её по мощности (1,2 Вт при максимальных 2-х) и пониженного напряжения накала (5,7 В, как нетрудно вычислить, глядя на схему), можно ожидать, что её ресурс окажется не хуже, чем у электролитических конденсаторов.
  4. Прямой монтаж благотворно сказывается на звуке из-за отсутствия лишних контактов, проводов и паек.
  5. В реальной схеме лампа весьма линейна, и конкретно в моей схеме имеется запас в 6 - 8 дБ по перегрузке до появления слышимых искажений. Тем более об этом можно судить при таком, как у меня, включении регулятора громкости, но это некоторое забегание вперед.
  6. Имеется ложечка дегтя: у ламп большой разброс по параметрам…
  7. …но ещё ведро мёда: лампа не страдает микрофонным эффектом, несмотря на большую крутизну (10 мА/В) и коэффициент усиления под две сотни.

Да, с винилом она не потянет, да и с хорошим магнитофоном тоже - нет запаса по входу. Даже, в общем-то, впритык, и для ЦАПа и усиление бешеное. А есть еще входные трансы… Но, несмотря на кажущуюся хилость 6С17К-В в качестве драйвера, все обстоит гораздо лучше, чем можно было предположить. Неустойчивости режима 2С4С мною не замечено. Выходное сопротивление регулятора громкости - максимум 25 кОм в среднем положении, достаточно малая величина. Да и никто не мешает уменьшить резистор утечки хоть в десять раз с соответствующим увеличением межкаскадной емкости. В конце концов, речь идет о конкретной и рабочей схеме.

Так что моя попытка создать «шведскую семью» между 6С17К-В, ЦАПом и 2С4С оказалась вполне успешной! И вот сейчас, пока вы читаете эти строки, все работает себе замечательно. Причем без слышимых искажений, несмотря на полный размах на входе. Каждый вечер слушаю. Вероятно, справочные данные и реальность, как и в Одессе, это две большие разницы.

Впрочем, ещё раз повторю, что, если не требуется такое усиление, вполне можно поставить что-нибудь более традиционное, почти не меняя схему. Если кто-то из вас соберется ею воспользоваться, он, разумеется, внесет в неё изменения в соответствии со своим видением и запросами. В таком случае лучше перенести регулятор громкости на привычное место - на вход. И все дела - пойдет с любым источником!

Часть 3

Усиливаемый сигнал снимается с резистора анодной нагрузки R2, лампы Л1 и идет на регулятор громкости, выполненный на переменном резисторе R4.

Предварительно мною были рассмотрены три варианта включения регулятора громкости:

  1. Параллельно анодному резистору R2. Недостатки очевидны: при регулировке происходит кратковременное изменение режима усилителя по постоянному току, и практически наверняка в звуковой сигнал будут пролезать шорохи от движка. К тому же меня повергло в беспокойство мнение Серёжи Рубцова о недопустимости подачи на этот тип резистора сколько-нибудь существенного постоянного смещения.
  2. Резистор заземляется через развязывающий конденсатор. Так и сделано в моей схеме. В качестве развязывающего применяются Black Gate (С2), шунтированные фторопластом (С3). Наблюдается некоторое снижение максимального размаха напряжения, что нетрудно компенсировать повышением напряжения питания. Вот почему оно на первом каскаде выше, чем на втором.
  3. Резистор заземляется напрямую. Недостатки аналогичны п. 1. При этом за счет образования делителя R2/R4 резко снижается максимальный размах напряжения первого каскада. Не пойдет, хотя отсутствие конденсатора теоретически могло бы улучшить звук.

Фирма «ЭРАудио» (бывш.«НЭМ»), г. Новосибирск. - Прим. ред.

Вынос регулятора из входных цепей в середину схемы объясняется просто: слишком сильно его негативное влияние на звук, несмотря на дороговизну и попытки включить его по схеме Г-регулятора. Бескомпромиссное построение первого каскада как бы вытеснило регулятор громкости в сильноточные участки схемы. Сразу скажу, что такое построение возможно только при гарантии отсутствия перегрузок по напряжению первого каскада. Это не составляет проблем при цифровом источнике (выше 0 дБ не прыгнешь), но, например, с магнитофоном аккуратность потребуется. С винилом же или произвольным источником придется возвращать регулятор на стандартное место в начало схемы либо предусмотреть для таких источников регулируемый (или нерегулируемый) аттенюатор на соответствующем входе.

Если для конденсатора анодного питания первого каскада С1 шунтирование не требуется, то для C2 оно желательно. Я объясняю это так: малое внутреннее сопротивление лампы Л1 (несколько кОм) с большим сопротивлением анодной нагрузки R2 образуют делитель, который эффективно отсекает от усиливаемого сигнала возможные пакости со стороны конденсатора С1. То есть сигнал в основном определяется лампой.

В случае положения регулятора в начале сектора влияние С2 может оказаться существенным. Практика показала, что так оно и есть. Даже Black Gate не идеальны! Влияние проявляется в первую очередь в слабой, но заметной резковатости верха, а также в некотором их завале. По мере разогрева (не «эзотерического» , а самого что ни на есть температурного) примерно в течение часа эти эффекты существенно слабеют, и звучание улучшается и заметно «натурализуется».

Возможно, следовало бы применить серию «K/FK» конденсаторов Black Gate, специально предназначенную для использования в аудиоцепях и отличающуюся низкими шумами менее 150 дБ. - Прим. ред.

«Эзотерический» разогрев конденсатора связан, прежде всего, с процессом формовки, который происходит каждый раз в той или иной степени после подачи напряжения на электроды. - Прим. ред.

Почему это так, можно посмотреть у Клауса (www.klausmobile. narod.ru). У него есть ссылка на исследования нелинейностей и потерь конденсаторов, где очень наглядно показано, насколько (во сколько раз!) улучшаются характеристики электролитических конденсаторов при нагреве.

Выбор типа шунтирующего конденсатора - вопрос ещё до конца мною не решенный, но он не велик: либо фторопласт, либо бумага - масло. Может быть, ещё и слюда. И всё. Никакие прочие пленки «не катят» - это я уже понял. Вопрос с «маслом» не решен по причине отсутствия нужных конденсаторов у меня. Эксперименты не закончены, процесс идет…

Часть 4

С регулятора громкости через разделительный конденсатор С4 сигнал поступает на сетку 2С4С. Антизвонный резистор отсутствует, поскольку мои эксперименты показали его полную ненужность. Построение второго каскада не имеет особенностей, разве что вместо мощного переменного резистора для организации искусственной средней точки в катоде для минимизации фона применены два постоянных резистора. Опыт показал, что вполне достаточно использовать постоянные резисторы с допуском не хуже 1%. Высокое качество такого решения очевидно, и проблем с фоном, по крайней мере, с 2С4С, не наблюдается.

Тип резисторов здесь не очень критичен. Они могут быть проволочными, металлопленочными прецизионных типов. Надо избегать лишь углерода и всяких МЛТ. Малый номинал при малом же коэффициенте усиления и крутизне 2С4С не создают существенной ООС на этих резисторах, что, в свою очередь, не требует применения специальных мер для удавления этой ООС.

Можно заметить, что лампы в моей схеме используются с некоторой перегрузкой по мощности на аноде. Это от жадности, не обращайте внимания, тем более что за год с лишним лампам ничего не сделалось.

Резисторы R8, R9 и R10 предназначены для отсечения от усилителя возможных нелинейностей выходных конденсаторов блока питания. Опять же это объясняется образованием делителя, состоящего из внутреннего сопротивления Black Gate в усилителе (не более десятков мОм) и собственно вышеуказанных резисторов. Кроме того, эти резисторы существенно ослабляют индуктивные помехи, которые могут появляться при образовании внешних замкнутых петель соединительных проводов. Специальных экспериментов по выявлению влияния этих резисторов на звучание я пока не проводил.

В конце малоутомительного пути сигнал с анода 2С4С попадает на первичку выходного трансформатора, из особенностей которого можно отметить лишь исключительно высокое качество и очень «плохую» цену. Качество его я оцениваю очень просто: он совершенно «прозрачен» для звука, его присутствие в тракте незаметно. Любые, даже самые незначительные изменения в схеме, включая лишние пайки и даже перемещение монтажного провода, сразу становятся слышны в моих АС.

Если внимательно посмотреть на схему, то можно заметить, что общий провод накала первого каскада и общий вывод конденсаторов С6 + С7 не присоединяются непосредственно к общей точке. Это не случайно, но о причинах пока умолчу. Должны же остаться какие-то тайны…

О вкусной и здоровой пище

Блок питания я сделал выносной с раздельным питанием накала, предварительных цепей и оконечного каскада. Он присоединяется к усилителю через громадный армейский разъём с посеребрёнными пластинчатыми контактами. Все основные напряжения блока, кроме накальных, регулируются, для чего применены простейшие стабилизаторы на полевых высоковольтных транзисторах. Да не ругайтесь вы, что БП диодный! Зато с принятыми мерами по помехоподавлению вообще и снижению помех от диодов в частности.

«…Если у тебя раздельные источники питания для первого и второго каскада, то можно довольно просто обойтись и без разделительного конденсатора. Цепляешь сетку выходной лампы прямо на анод входной (там постоянный потенциал +200 вольт), а от слаботочного источника питания - от которого питается первый каскад, - с помощью высокоомного резистивного делителя получаешь потенциал +245 вольт, и к этой точке цепляешь катод первой лампы. Мощное же питание, благо оно изолировано, цепляешь минусом на катод выходной лампы, а плюсом - на «холодный» конец трансформатора. В результате избавляешься от переходного конденсатора и всей цепи фиксированного смещения. Добавляется два резистора и высоковольтный (к сожалению) конденсатор, шунтирующий «земляное» плечо резистивного делителя. Примененный тобой способ регулирования громкости уместен и в данной конфигурации». - Прим. сочувствующего Андрея из Интернета.

На выходе БП стоят «мягкие» стабилизаторы по простейшей схеме: полевик в режиме повторителя, в цепи затвора - полупроводниковый стабилитрон. Выход стабилитрона через последовательный резистор подцеплен на большую емкость, присоединенную вторым концом к общему проводу - она дает плавный старт и добивает возможные пульсации-помехи-шумы. Параллельно конденсатору стоит переменный резистор, движок которого и подключен к затвору. Всё!

Диоды выпрямителя импульсные высоковольтные. Сюда подойдут любые, предназначенные для импульсных блоков питания с допустимым обратным напряжением не меньше утроенного выпрямленного. Сейчас на любом радиорынке всё это легко найти. Конкретно К20-39 просто были под рукой.

Последовательно с диодами стоят резисторы 10 Ом, параллельно диодам (параллельно каждому) керамическая емкость 0,1мкФ. На входе выпрямителя расположена емкость 0,1 мФ, на выходе - 1,0 мкФ.

Накальный трансформатор - ТПП 304, анодный слабосильный (для питания предварительного каскада) - ТА 84-220-50, анодный сильносильный - ТС180. Анодные трансформаторы включены в сеть через помехоподавляющий фильтр. В результате усилитель получился совершенно нечувствительным к помехам от сети, даже к щелчкам старого холодильника.

Выковырян из монитора, представляет собой C-L-C фильтр.

В планах у меня заказ либо покупка фирменных забугорных трансформаторов, а то отечественные изделия не вызывают доверия - гудят.

Можно и заказные «Электрон-Комплекс» попробовать. - Прим. ред.

Конечно же, мною был изготовлен макет блока питания на кенотронах 5Ц3С и 6Ц4П. Ну куда же я без этого! Как это ни крамольно, но в моей схеме он не показал заметных преимуществ перед полупроводниковым БП. Возможно, дело в том, что в обоих БП использовались большие выходные емкости по 470мкФ, а от помех диодного моста мне удалось эффективно избавиться. К тому же стабилизатор, будучи просто истоковым повторителем, совершенно равнодушен к переменчивости нагрузки. Так что пришлось засунуть кенотронный БП подальше и забыть про него, поскольку напряжение в розетке у меня свободно разгуливает от 170 до 220 В. В любом случае благодаря нашей военной промышленности смена блоков занимает минуту.

Часть 5

В звуковом отношении схема оказалась весьма чувствительна к качеству монтажа и количеству паек, причем настолько, что пришлось катодную цепь радикально минимизировать: катодный резистор одним выводом припаян прямо к ножке лампы, другим - к общей точке схемы. Монтаж входного каскада и цепей регулятора громкости сделан серебряной моножилой Jensen диаметром 0,8 мм. Все остальные цепи - медным проводом.

Также данная схема весьма чувствительна к типу катодного резистора. Углеродные, в том числе и БЛП, здесь оказались просто отвратительны, проволочные удовлетворительны, но не более того. ПТМН мне вообще не очень понравились, хотя набрал я их для экспериментов чудовищное количество. Как настроечный же элемент для получения желаемой окраски звука усилителя в целом катодный резистор непригоден.

Анодный резистор первого каскада - вот идеальный элемент для необходимой подкраски звука усилителя! Выбор типа этого резистора оказывает прямое влияние на звук.

Сейчас у меня это танталовый фольговый резистор, но я так и не смог сделать окончательный выбор между ним и Riken Ohm. Звук у них разный: Riken Ohm дает очень красивый окрас середины, какую-то особую динамику, смягчая верх и чуть смазывая детальность, а тантал стерилен и очень детален.

Как раз с танталовыми резисторами меня и подстерегла засада. Примерно год назад, излившись в Интернете (www.dvdworld.ru/cgi-bin/audiobbs.pl) мыслями по поводу звуковых качеств разных резисторов, я забраковал тантал. Но позднейшие мои изыскания показали, что это была ловушка, от попадания в которую я сам же и предостерегал. Дело в том, что хороший компонент может показаться «плохим», если в результате его установки в схему проявятся недостатки других узлов тракта. И резкость звука, которая мне тогда казалась свойством тантала, в действительности оказалась недостатком моего тогдашнего ЦАПа. Сейчас же справедливость восторжествовала, но звук Riken Ohm мне всё равно нравится.

В утечку первого каскада лучше что-нибудь пленочное - хорошее и прецизионное. Про прецизионные резисторы я говорю не случайно. Обычно это означает повышенное качество резистора вообще. (Во втором каскаде не так критично - можно и пленку, и углерод.) Подозреваю, что фольговые танталовые или медные будут еще лучше, но пока я не смог найти их на столь малые номиналы. Наилучшими здесь пока оказались отечественные С2-10.

С2-10 являются высокочастотными точными, что хорошо видно при внешнем осмотре. Основные признаки:

  • Блестящие не закрашенные колпачки.
  • На проводящем слое отсутствуют спиральные канавки - безындуктивность.
  • Присутствуют следы подгонки - продольные пропилы, сделанные алмазным диском.
  • Некоторые резисторы имеют темный синеватый металлический оттенок покрытия проводящего слоя.

Что касается выбора конденсатора С4, то моя остановка на ФТ определяется просто - это лучшее, из того, что я пробовал. По ФТ могу сказать то же, что и по танталовым резисторам: нейтральность и детальность без яда и резкости. Не буду утверждать, что они лучшие вообще. Например, очень хочу попробовать знаменитые медные конденсаторы Jensen (бумага - масло), о которых весьма положительно отзывались С. Рубцов и О. Хавин. Как у нас говорят: «Будут деньги - будет и медь с маслом!».

Прослушивались же такие конденсаторы: МБМ, К40-У9, К73, К71 - всё очень плохо! MultiCap RTX и PPFX, алюминиевый Jensen (бумага - масло) 1973 года , ССГ, К31 - сносно, но не более.

Неудача с Jensen, вероятно, вызвана тем, что они были старые и чисто электротехнические, несмотря на то, что выдраны из какого-то Audio Note.

Если вы задумали строить усилитель, то затраты на выходные трансформаторы настоятельно рекомендую планировать следующим образом:

  1. Располагая энной суммой под построение усилителя и имея намерение потратить её более-менее сразу, на трансформаторы отложите половину и никак не меньше.
  2. Если вы планируете потратить энную сумму в течение длительного времени (постепенная доводка), то повысьте стоимость трансов до двух третей этой суммы. Постепенно тратить легче.

Выходные трансформаторы (да и любые трансформаторы вообще!) не бывают слишком хорошими, просто бывает мало денег. Если даже в хорошей и «правильной» схеме поставить дешевое железо - чуда не случится, она не заиграет так, как могла бы. Трансформатор - сердце усилителя.

К сожалению, серьезная технология изготовления качественных трансформаторов, особенно для однотактных усилителей, за 80 последних лет не придумала дешевых решений. Так что не советую вам тешить себя надеждой намотать качественный выходной трансформатор самому на кухне. К тому времени, когда они станут у вас получаться более-менее сносными, уже наступят возрастные болезни, в том числе и ухудшение слуха.

Изготовление по-настоящему хороших трансформаторов под силу слаженным коллективам, например, нашим родным «ЭРАудио» из Новосибирска либо иноземным дядькам из Tamura-Magnequest-Sowter’ов и др. При этом ещё раз хочу напомнить историю о том, что трансформаторы Tango перестали выпускаться по причине преклонного возраста делавших их японских дедушек, которые так и не смогли передать накопленный опыт молодому поколению.

В настоящее время трансформаторы Tango продолжают выпускаться в Японии, но уже другим «коллективом авторов». Их номенклатура поредела более чем на две трети, а дорогие и качественные однотактные модели из неё исчезли совсем. Трансформаторы Tango прежних лет в настоящее время постепенно переходят в разряд антиквариата, в том числе и по цене. - Прим. ред.

Final

Если редакция сочтет возможным , то продолжение последует! В этом случае я планирую рассказать предысторию и дать несколько пройденных вариантов схем, схему фиксированного смещения выходного каскада. Подумаю также над оптимальной комплектацией усилителя, исходя из разных бюджетов.

Уже сочла. - Прим. ред.

Таблица 1

Детали усилителя
R1 100 k 1/4 w С2-10
R2 33 k 2 w Audio Note tantal, Riken Ohm, Kiwame, Allen Bradley
R3 2,7 Ohm 2 w С2-10
R4 100 k ALPS RK40112 «Black Beauty»
R5 1 m 1/4 w С-2-10, Holco, Audio Note tantal, Riken Ohm
R6, R7 5 Ohm 5 w С2-10
R8, R9 15 Ohm 2 w
R10 10 Ohm 1 w Audio Note tantal, Riken Ohm, Allen Bradley
Конденсаторы
С1,С2 100 + 100 мкФ х 500 В Black Gate WKZ
С3, С4 0,22 мкФ х 600 В ФТ-2 фторопласт
С5 0,47 мкФ х 200В MultiCap RTX
С6,С7 100 + 100 мкФ х 500 В Black Gate WKZ
Лампы
VL1 6C17К-В металлокерамический триод
VL2 2C4C прямонакальный триод
Моточные узлы
Др1 - 10 витков провода Jensen 0,8 мм (серебро, моножила), диаметр намотки 5 мм
Т1 - Tango X5-S

Минобрнауки России

Федеральное государственное бюджетное общеобразовательное

учреждение высшего профессионального образования

«Тульский государственный Университет»

Институт высокоточных систем им. В. П. Грязева

КАФЕДРА РАДИОЭЛЕКТРОНИКИ

Расчет двухкаскадного резистивного усилителя на биполярных транзисторах

пояснительная записка

к курсовой работе по электронике

Студент гр. 130601 ___________________ П.Л. Леонов

(подпись и дата)

Руководитель - доцент каф. РЭ_________________ В. В. Давыдов

Тула – 2012

Изм.

Лист

№ докум.

Подпись

Дата

Лист

Проверить что тут писать

Разраб.

Леонов П.Л.

Провер.

Давыдов В.В.

Т.котр.

Давыдов В.В.

Н. Контр

Утв.

Прохождение периодического сигнала через LC-фильтр с потерями.

Листов

ТулГУ гр.130601

Аннотация

Данная пояснительная записка написана к курсовой работе по дисциплине «Электроника» для варианта «03» и содержит в себе результаты расчета резистивного усилителя на биполярных транзисторах. В качестве анализируемого усилителя выступает двухкаскадный усилитель на кремниевых биполярных транзисторах, основные параметры которого рассчитываются в одной из частей данной записки.

В качестве дополнительного материала к текстовой информации данной пояснительной записки здесь приведены NN иллюстраций. Помимо этого составлена графическая часть на листе формата А1, включающая наиболее важные схемы и характеристики.

Объем пояснительной записки – NN листов.

  1. Титульный лист………………………………………………………..1
  2. Аннотация……………………………………………………………...2
  3. Бланк задания к курсовой работе………………………………….....3
  4. Содержание…………………………………………………………….5
  5. Введение………………………………………………………………..6
  6. Анализ технического задания на курсовую работу……………...….7
  7. Обзор литературных источников……………………………………..9
  8. Анализ заданной ЭДС………………………………………………..10
  9. Определение ширины спектра ЭДС…………………………………11
  10. Анализ схемы. Расчет параметров схемы………………………...14
  11. Расчет А-параметров схемы фильтра……………………………..15
  12. Входное сопротивление нагруженного четырехполюсника…….17
  13. Нахождение спектра выходного напряжения…………………….18
  14. Расчет коэффициентов передачи фильтра.……………………….20
  15. Расчет формы сигнала на выходе………………………………….23
  16. Изменение сопротивления нагрузки при неизменных параметрах схемы…………………………………………………………….………………..25
  17. Заключение………………………………………….………………28
  18. Список использованной литературы………….…………………..29

Введение

«Электроника» является важнейшей дисциплиной в программе подготовки специалиста направления «Радиотехника». Данный курс лекций помогает студентам приобретать навыки разработки методов анализа и синтеза радиотехнических устройств различного назначения на уровне схемотехнических решений. В соответствии с этим курс «Электроника» также является теоретической базой для изучения специальных дисциплин с одной стороны, и основой расчета и исследования разнообразных устройств и систем передачи/обработки информации с другой стороны.

Резистивные усилители являются неотъемлемой частью подавляющего большинства современных технических устройств, т.к.

дают возможность исследования и обработки слабых сигналов.

Помимо приобретения навыков анализа подобных систем в ходе выполнения курсовой работы студенты должны:

Закрепить знания о физических процессах в электрических цепях;

Закрепить и расширить знания о математических моделях, описывающих характеристики и свойства электрических цепей;

Закрепить навыки работы с прикладными программами как, например, с интегрированной средой для решения математических задач MathCAD и текстовым процессором (редактором) Word ;

В результате выполнения курсовой работы каждый студент должен будет понять физические явления в резистивных усилительных каскадах, основным назначением которых является усиление слабых сигналов в заданной полосе частот.

Анализ технического задания на курсовую работу

Вариант курсовой работы с номером «03» предполагает следующие входные данные для анализа и расчета:

Рис. 1 – Двухкаскадный резистивный усилитель.

Таблица №1 (параметры схемы):

R н,Ом

F н,Гц

Результатом выполнения курсовой работы должен быть расчет номинальных величин резисторов и конденсаторов схемы, коэффициентов нестабильности рабочих точек каскадов, а так же АЧХ каскадов и усилителя в целом. Я бы хотел выделить несколько этапов на пути получения результата:

1) Расчет номинальных величин сопротивлений и емкостей;

2) Уравнение комплексного коэффициента передачи усилителя;

3) Нормированная АЧХ усилителя;

4) Минимальные значения входных и выходных сопротивлений каскадов по переменному току;

Обзор литературных источников

В методическом указании к курсовой работе был приведен список рекомендуемой литературы. Расчет курсовой работы я вел с использованием лекционного материала, теоретических знаний, полученных на занятиях и лабораторных, а также некоторых изданий из списка рекомендуемых. О трех используемых мною книгах стоит поговорить более подробно.

Наиболее важным считаю данное издание:

В данной книге изложены все тонкости курса Основ теории цепей, особенно подробно рассмотрены основные законы и методы расчета электрических цепей при постоянных токах и напряжениях. Авторы уделяют внимание и вопросу о синусоидальных токах – данная тема важна для меня.

Вторым используемым изданием был справочник по математике, наиболее полный и наиболее подробных из всех представленных в библиотеке:

Третье издание я решил выбрать самостоятельно, им оказался самоучитель по работе в математической среде MathCAD . Справочник Кудрявцева, предложенный к использованию руководителем курсовой работы, был не таким понятным для меня, а также был недоступен для использования. В найденном мной самоучителе не был указан автор, т. к. издание имелось лишь в электронном виде. Тем не менее, данное пособие очень пригодилось при написании расчетного файла к курсовой работе.

Выбор биполярного транзистора.

Т.к. к усилителю не предъявлено жестких требования по граничной частоте,усилению и стабильности каскадов,выберем общедоступный транзистор кт361б

Рис. 2 – зависимость U нас от температуры кт361а.

Исходя из данных принимаем U нас=0,5В для 20 градусов по Цельсию.

Рис. 3 – входная ВАХ кт361б.

Входная ВАХ относительно линейна при U бэ=0,7В.

Таблица №2 (параметры транзисторов):

h 21э

F гр,Мгц

U кэmax, В

U бэmax, В

I кmax ,А

Расчет номинальных величин сопротивлений.

Рис. 4 – Двухкаскадный резистивный усилитель.

Для согласования выходного сопротивления усилителя с нагрузкой расчет следует вести с оконечного каскада:

R 5 примем равным R н для согласования каскада с нагрузкой.

Т.к. R н=510 Ом, то выберем R 5=510 Ом. β примем равным 200.

Напряжение на R 6 примем равным 0,1*Е=1 В;

На R 5 падает напряжение U 5=(E -U нас-U 6)/2=4.25 В;

Ток коллектора I к2=U 5/R 5=8.33 мА;

Отсюда найдем ток базы I б2= I к2/β=41.7 мкА;

R 6=0.1*E / I к2=120 Ом

Найдем ток делителя:

I дел2=(5÷10)* I б2=8* I б2=0,33 мА;

На резисторе R 4 падает напряжение U 4,следовательно

R 4=U 4/I дел2=(0.1E +U бэ)/I дел2=5.1 кОм;

R 3=(E -U 4)/(I дел2+ I б2)= 22 кОм;

Сопротивление R бэ=U бэ/I б2=16,8 кОм.

Найдем входное и выходное сопротивления 2-го каскада по переменному току:

Рис.5-эквивалентная схема замещения второго каскада.

Из рис.5 видно:

Y вх2=1/ R 4+1/ R 3+1/(R 6+ R бэ)

R вх2=1/ Y вх2=3.3 кОм.

R кэ2= U Эрли/ I к2

U Эрли примем равным 95В

R кэ2=11,5 кОм.

R вых2= (R кэ2* R 5)/(R кэ2+ R 5)=588 Ом.

Расчитаем номинальные величины сопротивлений первого каскада:

R 2≈ R вх2=3.3 кОм.

I к1=(E - U нас)/(2* R 2)=1.44 мА.

I б1= I к1/ β =7.2 мкА.

R 1=(E - U бэ)/ I б1=1,2 Мом.

Рис.6-эквивалентная схема замещения первого каскада.

R бэ1=97,2 кОм.

R кэ1=66 кОм.

R вх1=(R бэ1* R 1)/(R бэ1+ R 1)=89,9 кОм.

R вых1=(R кэ1* R 2)/(R кэ1+ R 2)=3,14 кОм.

Найдем номинальные величины емкостей:

Т.к. на R вх должно быть падение напряжения не менее 1/√2 U сигн,то

Zc на f н не должно превышать (√2-1) R вх,следовательно

С=0,312/(f н* R вх).

С1≈0,312/(f н* R вх1)=33 нФ.

С2≈0,312/(f н* R вх2)=0,75 мкФ.

С3≈0,312/(f н* R н)=5,1 мкФ.

Рис.7-Принципиальная электрическая схема усилителя.

Уравнение комплексного коэффициента передачи усилителя.

Коэффициент передачи входного напряжения равен

Кu вх(jω )=R вх*(R вх+Zc вх(jω )).

I вх(jω )=U вх* Кu вх(jω )/R бэ.

I вых(jω )=β* I вх(jω ).

U вых(jω )= I вых(jω )*R н/(R вых+R н).

При обработке данных формул с помощью ЭВМ получаем:

Имея уравнение комплексного коэффициента передачи усилителя можно найти АЧХ усилителя в заданной полосе частот.

Расчет АЧХ усилителя.

Для расчета АЧХ усилителя нам понадобится модуль коэффициента передачи. Произведя расчет получаем:

Таблица №3 (коэффициенты передачи усилителя):

F ,Гц

1000

2000

5000

10000

Коэффициент передачи усилителя зависит от частоты нелинейно,

т.к. в схеме присутствуют реактивные элементы (конденсаторы).

Построим график нормированной АЧХ от 0 Гц до 10 кГц:

Рис.8-нормированная АЧХ усилителя от 0 Гц до 10 кГц.

Коэффициент усиления выражен в дБ. Этот график не удобен, т.к. на нем плохо видно увеличение АЧХ на низких частотах. Поэтому разобьем диапазон частот на несколько отрезков.

Заключение

В данной курсовой работе были рассмотрены характеристики П-образного реактивного фильтра нижних частот и приведены все необходимые формулы вычисления его параметров с таблицами значений и рисунками. Результаты расчёта были получены с помощью интегральной среды Math CAD . Система Math CAD называется самой современной, универсальной и массовой математической системой. Она позволяет выполнить как численные, так и аналитические (символьные) вычисления, имеет удобный математическо-ориентированный интерфейс.

По итогам курсовой работы можно сделать некоторые выводы. Если говорить конкретнее, то:

  1. Был произведен анализ задания на курсовую работу;
  2. Исходная функция входного сигнала была разложена в ряд Фурье и полностью проанализирована;
  3. Были рассчитаны параметры элементов схемы фильтра, рассчитаны его важные параметры, а также составлены амплитудно- и фазочастотные характеристики.

Также в ходе выполнения курсовой работы я нашел входное сопротивление системы и формы выходного напряжения для заданной формы сигнала. В некоторых местах пояснительной записки были приведены необходимые цветные иллюстрации, поясняющие работу и упрощающие понимании написанного.

Список использованной литературы

  1. Основы теории цепей: Учебник для вузов ⁄ Г.В. Зевеке, П.А. Ионкин, А.В. Нетушил, С.В. Страхов. – 5-е изд., перераб. – М.: Энергоатомиздат, 1989. – 528 с.: ил.
  2. Бронштейн И.Н. и Семендяев К.А. Справочник по математике для инженеров и учащихся втузов. Изд-е 13-е, перераб. – М.: ГИТТЛ, 1986. – 504 с.
  3. ГОСТ 2.004-88 ЕСКД. Общие требования к выполнению конструкторских и технологических документов на печатающих и графических устройствах вывода ЭВМ
  4. Самоучитель по MathCAD – книга в электронном виде.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама